14-3-3gamma is upregulated by in vitro ischemia and binds to protein kinase Raf in primary cultures of astrocytes.

نویسندگان

  • Xiao Qian Chen
  • Jian Guo Chen
  • Yun Zhang
  • Wendy Wen Luan Hsiao
  • Albert Cheung Hoi Yu
چکیده

The 14-3-3 protein family comprises critical regulatory molecules involved in signaling during cell division, proliferation, and apoptosis. Despite extensive study, the functions of the 14-3-3 proteins in brain remain unclear. 14-3-3gamma, a subtype of the 14-3-3 family of proteins, was thought to be brain- and neuron-specific. Using RNA arbitrarily primed PCR, we identified an upregulated cDNA fragment of the 14-3-3gamma gene in primary cultures of astrocytes. Using Northern blot analysis, we confirmed this fragment was brain-specific. In cultures of astrocytes, 14-3-3gamma genes and proteins were differentially expressed at different ages and the proteins were distributed only in the cytoplasm. These results indicated that 14-3-3gamma was not neuron-specific but also expressed in astrocytes. The function of this protein in brain is unclear. Northern and Western blot analyses demonstrated that 14-3-3gamma mRNA and protein were upregulated in cultured astrocytes in an anaerobic chamber-induced ischemia model. The induction of 14-3-3gamma proteins was neither suppressed by an MAP kinase inhibitor (U0126) nor a PI-3 kinase inhibitor (LY294002). These data indicated that induction of 14-3-3gamma might not involve PI-3 and MAP kinase-dependent pathways. Using coimmunoprecipitation, we demonstrated that endogenous 14-3-3gamma bound to c-Raf-1 and p-Raf 259. As Raf is one of the critical serine/threonine kinases controlling cell growth, differentiation, and death, the binding of 14-3-3gamma to Raf indicates the critical role of this protein in ischemia-induced apoptosis and the changes in signal transduction in astrocytes in culture.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association of 14-3-3gamma and phosphorylated bad attenuates injury in ischemic astrocytes.

Our recent findings indicate an induced upregulation of 14-3-3gamma mRNA and protein in ischemic cortical astrocytes. Despite being brain-specific, the functional role of 14-3-3gamma in the brain still remains largely unknown. In this study, we show that among all the 14-3-3 isoforms, only the gamma isoform is inducible under ischemia in astrocytes. Furthermore, this upregulation of 14-3-3gamma...

متن کامل

14-3-3gamma affects dynamics and integrity of glial filaments by binding to phosphorylated GFAP.

Recent findings indicated a protective role of GFAP in ischemic brain, injured spinal cord, and in neurodegenerative disease. We previously demonstrated that 14-3-3gamma, once thought to be neuronal specific, was up-regulated by ischemia in astrocytes and may play a specific protective role in astrocytes. Here we report that 14-3-3gamma associates with both soluble and filamentous GFAP in a pho...

متن کامل

Acute and chronic effects of lithium on BDNF and GDNF mRNA and protein levels in rat primary neuronal, astroglial and neuroastroglia cultures

Objective(s):Theneuroprotective effect of lithium has been attributed to its therapeutic action. However, the role of glial cells particularly astrocytes, and the possible interactions between neurons and astrocytes in neuroprotective effects of lithium have been disregarded. Thus, the aim of this study was to evaluate the direct effects of lithium on brain derived neurotrophic factor (BDNF) an...

متن کامل

14-3-3gamma binds to MDMX that is phosphorylated by UV-activated Chk1, resulting in p53 activation.

It has been shown that MDMX inhibits the activity of the tumor suppressor p53 by primarily cooperating with the p53 feedback regulator MDM2. Here, our study shows that this inhibition can be overcome by 14-3-3gamma and Chk1. 14-3-3gamma was identified as an MDMX-associated protein via an immuno-affinity purification-coupled mass spectrometry. Consistently, 14-3-3gamma directly interacted with M...

متن کامل

Selective regulation of 14-3-3eta in primary culture of cerebral cortical neurons and astrocytes during development.

The 14-3-3 proteins exist predominantly in the brain and may play regulatory roles in cellular processes of growth, differentiation, survival, and apoptosis. The biological functions, however, of the various 14-3-3 isoforms (beta, epsilon, eta, gamma, and zeta) in the brain remain unclear. We have reported previously upregulation of 14-3-3gamma in ischemic astrocytes. In the present study, we r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Glia

دوره 42 4  شماره 

صفحات  -

تاریخ انتشار 2003